Nuclear Reactor Technology
A nuclear reactor is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate, as opposed to a nuclear bomb, in which the chain reaction occurs in a fraction of a second and is uncontrolled causing an explosion.
The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for the power in some ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines.Pebble Bed Reactors could allow nuclear plants to support the goal of reducing global climate change in an energy hungry world. They are small, modular, inherently safe, use a demonstrated nuclear technology and can be competitive with fossil fuels. Pebble bed reactors are helium cooled reactors that use small tennis ball size fuel balls consisting of only 9 grams of uranium per pebble to provide a low power density reactor. The low power density and large graphite core provide inherent safety features such that the peak temperature reached even under the complete loss of coolant accident without any active emergency core cooling system is significantly below the temperature that the fuel melts. This feature should enhance public confidence in this nuclear technology. With advanced modularity principles, it is expected that this type of design and assembly could lower the cost of new nuclear plants removing a major impediment to deployment.
Power Generation
Solution for the design, construction, and operation of nuclear, coal, and all types of power generation plants. Bentley solutions for Power Generation address the design, construction, and operation of power generation plants.
New Plants
The commercial viability of reactors that have not yet been built is a different matter—at least for now. A recent Massachusetts Institute of Technology (MIT) study offers probably the best current estimate of the aggregated cost of constructing, licensing, and running a newly commissioned light-water reactor, and how it compares to the coal or gas substitutes. At an average of 6.7 cents per kilowatt-hour, the "levelized'' cost of the nuclear plant decidedly exceeds that of a pulverized coal-fired plant (4.2 cents/kw-hr). Nor does the nuke compete with a combined-cycle natural gas-powered plant (CCGT), even assuming a high price for natural gas. Thus, if gas were priced at $6.72 per thousand cubic feet, the lifetime average for electricity from the CCGT still comes to 5.6 cents/kw-hr, which is less than the nuclear plant.
http://www.brookings.edu/papers/2004/09environment_nivola.aspx
New Plants
The commercial viability of reactors that have not yet been built is a different matter—at least for now. A recent Massachusetts Institute of Technology (MIT) study offers probably the best current estimate of the aggregated cost of constructing, licensing, and running a newly commissioned light-water reactor, and how it compares to the coal or gas substitutes. At an average of 6.7 cents per kilowatt-hour, the "levelized'' cost of the nuclear plant decidedly exceeds that of a pulverized coal-fired plant (4.2 cents/kw-hr). Nor does the nuke compete with a combined-cycle natural gas-powered plant (CCGT), even assuming a high price for natural gas. Thus, if gas were priced at $6.72 per thousand cubic feet, the lifetime average for electricity from the CCGT still comes to 5.6 cents/kw-hr, which is less than the nuclear plant.
http://www.brookings.edu/papers/2004/09environment_nivola.aspx
A tendency among commentators, even experts like Bernard L. Cohen, the author of the sentence above, is to regard the complicated story of nuclear energy in the United States as exceptionally troubled and frustrating. The root cause of the troubles and frustrations, moreover, is commonly thought to be more political than economic. The promise of nuclear power in the United States is said to have been dimmed primarily by an eccentrically risk-averse public and an unusually hostile regulatory climate. Practically nowhere else, it is said, have political and legal institutions been so uncooperative. Supposedly the central governments of most other advanced countries have lent far more support to their nuclear industries. And because those governments are assumed to be more aggressive in combating pollution, including greenhouse gas emissions from burning fossil fuels, surely "the rest of the world'' has been doing much more than America to level the playing field for the development of nuclear energy. But just how valid is this conventional picture?
Comments
Post a Comment